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Perturbational Variations in a Ballistic Missile or
Satellite Orbit about an Oblate Earth
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This paper treats the problem of the oblateness effect on Earth satellites and ballistic
missiles iii terms of the expected deviations in position prediction relative to an ideal Kep-
lerian orbit. The resulting closed form solutions in the variations in radius, in-plane angle,
and lateral displacement have the following significant features: 1) easily instrumented in real-
time tracking and prediction systems; 2) no restrictions on eccentricity, including orbits
with escape velocities; and 3) offers a physical insight into the oblateness effect on freeflight
trajectories. In addition, the second-order solutions are applicable for all angles of incli-
nation with the possible exception of the region of critical inclination.

Nomenclature
V = oblate potential function
GM = gravitational product of Earth
re = mean value of the equatorial radius of Earth
r = instantaneous geocentric radius of 'the satellite
<P = colatitude angle of the satellite measured from Earth's

rotating axis
/ = second harmonic oblateness coefficient
dr = variation in the satellite radius caused by oblateness
0 = orbital in-plane angle of the satellite measured relative

to the nodal line
/8 = nondimensional coefficient of angular momentum per-

turbation
i = inclination angle of the orbital plane
c = eccentricity of the orbit
I = a(l — e2), length of the semilatus rectum
At = angle of perigee of the orbit relative to the nodal line
^ = lateral deflection angle of the satellite relative to the

reference orbit plane
L — Lagrangian function
E = energy

Introduction

RECENTLY, a number of papers have been published in
the technical literature concerning the oblateness

effect on artificial Earth satellites. A partial list of the
available references is given in the bibliography.4'5-7'9-13'16'17

Baker and Makemson1 and Sterne15 devote several chapters in
their respective books on the subject. With the possible excep-
tion of a few, the general approach falls into one of two cate-
gories: 1) the application of the variation of parameters
technique on the classical orbital elements, or 2) the direct
integration of the equations of motion, either by numerical
i ntegr at ion or by transformation of th e variables. The method
of the variation of the parameters applied to the oblate Earth
satellite problem yields results in terms of periodic and secular
variations of the orbital elements. These results are useful if
the primary interest in the oblate Earth satellite problem is
a critical examination of the time dependence on the orbital
elements. However, if the primary interest in the problem is to
determine the oblateness effect on the predicted positions of a
satellite or ballistic missile, the method of direct integration
is more useful. Many, such as Brouwer,2 Garfinkel,3 and
Vinti,18 have performed direct integration on the equations
of motion resulting in elliptic functions or elliptical integrals.

The analysis described in this paper also determines the
solutions by the method of direct integration. Its purpose,
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however, is to determine simple solutions directly in terms of
the satellite position and velocity parameters. These solu-
tions are obtained by integrating the transformed force equa-
tions in terms of the difference values in the radius vector,
in-plane angular displacement, and the crossrange displacement
of the perturbed satellite orbit relative to a Keplerian elliptical
orbit. The general solutions resulting from the analysis are
also applicable for eccentricities of 1 and larger. Also, the
solutions are understandable in terms of the geometry of the
orbit. As a result, the solutions yield a physical insight into
the oblateness effect on any orbiting satellite.

The equations of motion in terms of the difference values
are obtained by using the truncated potential function that
retains the second harmonic term in the latitude variation.
Then the perturbations on the radius vector and the angular
velocity are coupled together with the Lagrange equations
of motion into a simple second-order differential equation.
In addition, the application of the truncated potential func-
tion gives rise to a force normal to the orbit plane, provided
that the satellite is neither polar nor equatorial. For the
polar and equatorial orbits, the lateral displacement force
equation is zero using the truncated potential function

V(r, • ~(GM/re)[(re/r) (0

Oblateness Correction in the Radius Vector and
the Angular Velocity

Since the Earth is flattened at the poles and bulges at the
Equator, a latitude variation in mass creates a noncentral
force field that can be represented by the potential function6'8

(2)

gravitational product of Earth
distance to the center of Earth
mean equatorial radius of Earth
geocentric colatitude of the satellite position
| cosV —
-f cosV
•§•(35 cosV - 30 cos V + 3)

where
GM
r
re
<P
P2(cos<p)
P3(cos<p)
P4(cos<p)

— -J cos<p

and /, H, and K are the coefficients of the second, third, and
fourth zonal harmonics.

The best present values of the geocentric constants based
upon satellite data6 are

re = 6,378,145(1 ± 11 X lO'6) m
(GM)1'2 = 1.996,501,5(1 ± 11 X 10~6) X 10-2megm3/2/sec
/ = (1623.41 ± 4) X 10 -«
H = (6.04 ± 0.73) X lO-e
K = (6.37 ± 0.23) X 10~6
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Since the uncertainty of the second zonal harmonic J is
of the order of the H and K coefficients, the uncertainties in
the results of the analysis using the truncated oblate potential
expressed by Eq. (1) would tend to mask out the effects
caused by oblateness using the H and K terms. Thus, the H
and K terms will be omitted in this analysis.

Additional Assumptions

The analysis is performed in a drag-free atmosphere where
Newtonian forces caused by the gravitational potential func-
tion, Eq. (1), are the only forces considered. Also, the gravi-
tational attractions of the sun, moon, and nearby planets are
ignored. Spitzer14 has shown that the effect of the sun and
moon alter the radial distance of a 500-mile altitude satellite
approximately 1 and 2 ft, respectively, and alter the plane of
rotation 0.05 and 1 deg/yr. These effects are negligible and
are masked by the uncertainties in the geocentric oblate
constants. In addition, the analysis is performed in a geo-
centric inertial frame of reference of the Earth. . . . . . . .

Analysis

Let

r .==• Earth-centered radial distance of the satellite
ru — associated unperturbed Earth-centered distance of

the satellite which results from a pure inverse
square law force field (Keplerian motion)

5r = r — rU) which is the perturbation in ru caused by
oblateness

6 = in-plane angle of the satellite relative to equatorial
crossing

/3 = nondimensional coefficient of perturbation
P = unperturbed angular momentum of the satellite asso-

ciated with the reference orbit

Then in terms of the "orbital plane" the Lagrangian equa-
tions of motions are expressed as

r - r02 + (GM/r.) [(re/r2) - 2/(re
3A4)P2(cos«rf] = 0 (3)

(d/d£)(rW) = —|/G?Af(re2/r3)y/c?0)P2(cos^) (4)

(The orbital plane is to be considered as the instantaneous
orbital plane that contains the satellite and its velocity vector
and is inclined at an instantaneous inclination angle i relative
to the equatorial plane. The lateral displacement effect
caused by the Earth's oblateness exerts a torque upon the
orbital plane causing a twisting motion of the instantaneous
orbital plane. Thus, although the satellite motion is not
planar, it can be treated as a planar orbit in which the orbit
plane rotates about the Earth's axis.)

Eq. (4) can be integrated Immediately in terms of the angu-
lar momentum of the unperturbed orbit:

where

(6)

Since this analysis is restricted to the order of the J har-
monic coefficient in the oblateness effect, Eq. (6) can be in-
tegrated directly by using the solution of the Keplerian orbit.

+ ^ cos(0 -
o(l - e2) (7)

By transforming Eq. (6) from a time integration to a 6 inte-
gration, Eq. (6) becomes

P
dP2(cos<p)

dO

where

dr = dd/B

= r*d6/P
The well-known relationship between^ and 0 is

=' sim sin0 (10)

(9)

Upon substitution of Eqs. (7) and (10) into Eq. (8), the solu-
tion for j3 can be found as

2JGMre
z sin2t Fsi

P'a(l-e')
cos30 1

3 J

where C is a constant of integration.
In the foregoing integration, the variations in sim, sinju, and

cos/* werei .neglected sinces the solution is only of the order of
the J harmonic coefficient.

.? ^STow reconsider Eq. (5). By considering the difference
values between the actual geocentric radius r of the satellite
and the associated unperturbed radius ru determined by the
Keplerian ellipse and also the corresponding difference values
in 6, the use of Eq. (5) results in

where

= (rtt/2) [£-'

r = ru + dr

e = eu + dd

(12)

(13)

The force equation of the difference values results, from the
substitution of Eq. (13) into the force equation, Eq. (3), as

& - far - 2r0S0 - 2(GM/r*)dr -

2Jr£M(re
2/r4)P2(cos<p) = 0 (14)

In Eq. (14) and all succeeding equations involving the dif-
ference values, the subscript u indicating the unperturbed
values is dropped.

Eq. (14) can be simplified by transforming the first term
into its equivalent 0 derivative. This results in

If = - 2(r6/r)(ddr/d0) (15)

dd (8)

An expression for the second term in Eq. (15) can be found
by considering the total energy equation. Using the second-
order truncated potential function that results from Eq. (2),
the total energy can be given as
E = (r2/2) + (r202/2) -

(GM/re)[(re/r) - f J(reVrs)P2(cos^)] (16)

Upon substitution of Eq. (13) into Eq. (16),

5E = r8r + r20S0 + rd*5r + (GM/r^dr +
%JGM (re

2/r3)P2(cos<p) (17)

Eq. (17) represents the difference between the energy of the
satellite in an oblate Earth orbit and the corresponding energy
of the satellite in orbit about a spherical Earth.

Upon rearranging Eq. (17),

-r6(ddr/dd) = rme + rd*dr + (GM/r2)5r +
|/£M(reVr3)P2(cos<p) - dE (18)

Then substituting Eqs. (15) and (18) into Eq. (14), Eq. (14)
simplifies into

dr = f/(re2/Z)P2(cos^) + 2(5#/P2)r3 (19)
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which becomes

(d^dr/dd2) + 5r = f /(re
2//)P2(cos^) + 25E(l*/P*) X

[1 - 3<= cos(0 - /z) + 6e2 cos2(0 - /z) - . . .] (20)

where [1 + e cos(0 — /j)]~3 has been expanded in series form
under the condition that the eccentricity is less than 1. This
condition can be removed for orbits with eccentricities in the
neighborhood of 1 and larger by choosing the reference orbit
such that dE = 0. Eq. (20) has the solution

8r = A sm6 + B cos0 — -
2 sin2t + 1) +

3e0 sin(0 - /x) -

)(sin2t sin20 -
*) [2(1 - 4e2) -
cos2(0 -/*) + . (21)

where A and B are constants of integration which are of the
order of /. In the foregoing equations,

,1 = (22)
which for elliptical orbits corresponds to the length of the
semilatus rectum.

A word of caution must be noted on the initial condition re-
strictions. Since ..ft — 0 at time t = 0, the initial conditions
on 5r and 50 are related by the equation

25r00o = -r0500 (23)

In addition, Eq. (17) relates dE with the initial conditions on
5r, dr, and 50. Thus, in general, either 5r0 or 500 and either
dr or dE can be specified to describe the reference Keplerian
orbit from initial position and velocity data.

For most Earth satellite orbits where the eccentricity is
sufficiently small compared to 1, a consistent set of initial
conditions are

dr0 = drQ = 500 = 0

dE = !/£M(re
2/ro3)P2(cos*>o)

(24)

This ideal set of initial conditions matches the Keplerian
reference orbit to the perturbed orbit at time t = 0.

To determine the perturbation in the in-plane angle 0, the
solution for 5r, Eq. (21), is substituted into Eq. (12), which
can be transformed into

dde/dB = ft - (25r/r) (25)
Upon integration, Eq. (25) has the solution

•)-
+ B cosju) + CI B +

[ A 4 r2 "12 T - T7 J -£ c sin2t sinju cos0 +/ 3 I2 J

[_ ? 2_ !!L 1 •
T 3 Z2 e m l C° MJ

- €Sin2'eos/i
7? ,

45# — (1 - 4e2) - j (A

1 T re* . 1 e
— J ^- sm2t + — ̂ . T

[
— B cosjit sin20 +j

T 2
r 'e - 1) e sin(0 - M) -

(A + B sin/x) j sin20 - 6 5# — e0 cos(0 - ji) +

* Sin2(^ - /*) - 5^ i €'(^ - M)cos2(0 - M) -

(26)

where A and B are the constants of integration associated
with 5r, (7 is the constant of integration associated with ft,
and D is a new constant of integration.

Crossrange Oblateness Correction

From the physics of particles in a gravitational field, the
gravitational force per unit mass is the negative of the
potential gradient. Thus, since the chosen model for the
oblate potential function is a function of latitude as well as
the radius, the potential gradient has a component normal to
the geocentric orbit plane. The normal component of force
corresponding to the normal gradient gives rise to a lateral
displacement of the satellite relative to the reference orbit
plane. If the lateral displacement is attributed only to a
differential change in the inclination angle, the instantaneous
orbit plane eventually would become coplanar with the
equatorial reference plane. However, in addition to the
change in the inclination angle, the lateral displacement causes
an angular change in the line of nodal crossing. Thus, the
instantaneous orbit plane behaves analogous to a gyroscopic
precession in the variational behavior of the inclination angle
and the nodal line.

In addition to lateral potential gradient, the satellite ex-
periences a centrifugal force. With respect to the unper-
turbed orbit plane, the centrifugal force has a component
along the normal to the reference orbit plane. This com-
ponent is of the order of the potential gradient in the cross-
range direction of the reference plane.

The equation of motion in the cross direction could be de-
termined from the foregoing discussion on physical behavior
of particles in an oblate gravitational field; however, it is
simpler to derive the equation of motion in the cross direction
from the application of the complete Lagrangian function L,
which is

r202 - V(r,<p) (27)

where, in addition to r, 0, #>, and 7, which have been defined
previously, ^ is the geocentric angle between the geocentric
radius vector of the satellite and the reference orbit plane,
measured in a plane perpendicular to the reference orbit
plane. From Eq. (27), the lateral equation of motion is

By restricting \[/ to small angles of the order of / and trans-
forming the time derivatives to 0 derivatives, Eq. (28) be-
comes

(d2\[//d02) + $ = — (l/r202)(d7/c>i/') (29)

The right side of Eq. (29) can be written in a more con-
venient form by the transformation

= — (cost/sin (30)

where \[/ is measured positive in the direction of the positive
normal to the reference .plane. The positive normal is defined
a-s

er X

where er and e# are unit vectors associated with the radius
vector and the local horizontal velocity of the satellite meas-
ured in the unperturbed orbit plane.

Using the truncated potential function and the relationship
cos<p = sint sin0, the J order approximation of Eq. (29) is

= -J(r*/lr)

where I = a(l — e2). Upon substituting

sin0 (31)

Eq. (31) becomes

1 + € COS(0 -

I

sin2t[sin0
6 sin(20 - sin/*] (32)
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Fig. 1 Radial perturbation of a 100-mile altitude satellite
(t = 35°, e = 0)

Eq. (32) has a general solution

\l/ = a\ sin0 + «2 cos0 + ^ J(re
2/l2) sin2i[0 cos0 +

(e/3) sin(20 - /*) - e sinju] (33)

Then the crossrange perturbation can be computed from Eq,

Discussion of Results

The problem of the oblateness effects on ballistic missiles or
satellites has been analyzed from the viewpoint of differential
errors relative to an ideal Keplerian orbit. The results in this
form readily are applicable to real-time systems. For ex-
ample, when analyzing the downrange errors of a ballistic
missile, the oblateness variations can be considered as additive
errors in addition to the errors determined by variations in the
burnout parameters and errors caused by the drag effect.

In addition, by the proper choice of the difference energy con-
stant and the initial conditions, the foregoing results can be
applied to orbits with escape velocities.

The solutions are accurate to the order of the / harmonic
coefficient and are not intended to determine the variations
in the "fine structure" perturbations hi the H and K har-
monic coefficients. Also, the solutions are not applicable to
long-period variations without correction on the reference
orbit. For long-period variations without reference orbit
correction, the secular and Poisson variations in the foregoing
solutions eventually will exceed the basic assumption that the
variations are of the order of the J harmonic coefficient.
When the variations become larger than of / order, the dif-
ference equations used in the analysis require the addition of
the quadratic and higher order terms in the variations.

Effect of Perturbation of the Inclination Angle

With respect to the inclination, a criticism has been re-
ceived by the author of a possible error in logic in assuming

Fig. 3 Lateral angular perturbation of a 100-mile altitude
satellite (t = 35°, e = 0)

that the variations in the inclination angle do not affect the
integrations carried out in the analysis except to the order of
J"2. This assumption has been used in the integration of Eqs.
(8, 20, 25, and 32).

To determine the order of magnitude of the variation in the
inclination angle 5i, consider the constancy of the Z component
of the perturbed angular momentum

r2d cost = const

or from Eq. (5)

P(l + j8) cost = const

Differentiating Eq. (35) with respect to S results hi

ddi/dO = ctm(d|8/d0)

(34)

(35)

(36)

Upon differentiating Eq. (8) with respect to 6, treating i as
a variable and substituting the result into Eq. (36) results in

ddi/dd = - sin2i sin2(9 + 0(/2) (37)

Fig. 2 In-plane angular perturbation of a 100-mile
altitude satellite (t = 35°, e = 0)

Thus, the variations in the inclination angle t are only of the
order of /, which justifies the original assumption that the
inclusion of the variational behavior of the inclination angle
gives rise to terms of the order of /2 in the result.

Special Cases of Initial Conditions Chosen at
Equatorial Crossing

To discuss the general behavior of the closed form solu-
tions, it is of interest to consider the case where the reference
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Keplerian orbit is matched with the perturbed orbit in posi-
tion and velocity at the time of nodal crossing. !

Then the solution in 5r becomes

dr = JZ2(re
2Ao3) [| cos0 - f +

e0 sin(0 — /z) + e sin/z sin#] +

&/(r.VO[(l - 2 sin20(cos0 - 1) - smh sin20] (38)
From Eq. (38), dr has a maximum at 6 = TT and odd multiples
of TT for the orbits whose eccentricity is zero or for the orbits
where the angle of perigee is x/2. For all other orbits with rela-
tively small eccentricity, the maximum occurs in the neighbor-
hood of 0 = (2n — !)TT, where n = 1, 2, 3 . . . . For the case e
= 0,

5rmax = (-2 sinn)/(r.VZ) (39)

The interesting feature about Eq. (39) is that 5rmax is non-
zero for the circular equatorial orbit. This is to be expected
since there is a radial perturbation in r for circular equatorial
orbits in accordance with Eq. (19) with L= 0.

Another interesting feature of Eq. (38) is that for orbits
whose eccentricity is nonzero there is a Poisson variational
term [0 sin(0 — /*)], which can be attributed to the precession
of the perihelion.

The variation in 6 also includes a Poisson term for orbits
with nonzero eccentricity. Other than the Poisson term, the
physical behavior of the secular and periodic variations in 6
can be examined by considering the simple case in which
e = 0 and for which the initial conditions are chosen at the
time of equatorial crossing. For this special case

d6 = J(r*/l) [(2 - £ sin2i)0 + A- sin2t sin 20 +
2(f sin26 - 1) sin0] (40)

The secular term added to the periodic terms gives rise to a
positive displacement in the angular motion of the perturbed
satellite relative to the motion of the satellite in the Keplerian
orbit. In addition, the secular term in Eq. (40) is the major
contributor to the precession of the perihelion for orbits with
nonzero eccentricity.

For the lateral perturbation, if the initial conditions are
chosen at the time of equatorial crossing with the perturbed
position and velocity matched with the Keplerian orbit, the
equation for the lateral perturbation becomes

$ = iJ(re
z/l2) sin2t[0 cos0 - (1 + fe cos^) sin0 +
!e sinju cos0 + (e/3) sin(20 - /z) - e sin/*] (41)

The most significant term in the lateral perturbation is the
Poisson term (0 cos0), which is the perturbation that gives
rise to the secular variation in the instantaneous nodal line.
To the / order of approximation, the lateral perturbation is
the largest contributor to the variation in the node and the
variation in the inclination angle. Since ^ is measured
positive in the direction of the positive normal, the nodal
variation results in the regression of the node. The regression
of the node and the precession of the perihelion can be studied
from the results of this analysis by the use of vector analysis to
transform the variations in position into variations in the
node and the perihelion.

Figures 1-3 are plots of the variations given in Eqs. (38, 40,
and 41), respectively, for the case e = 0.

To obtain a physical insight in the oblateness effect on
orbiting satellites, consider Eqs. (38, 40, and 41) and the
corresponding three figures simultaneously for the special
case e = 0. Initially, let two particles coincide in position

and velocity at the point of equatorial crossing moving in a
northerly direction at the inclination angle t. Let one of the
particles move in a Keplerian force field in a circular orbit.
Let the other particle move in the oblate force field. Then,
during the first half of the orbit, the particle in the oblate force
field decreases its geocentric radius and moves ahead of the
particle in the circular orbit. As the particle in the circular
orbit crosses the Equator moving south, the particle in the
oblate field has minimum radius. Then, during the next half
cycle, the radius of the particle in the oblate field increases
until at the end of this half cycle the radius matches the initial
radius. The angular displacement between the two particles
monotonically increases with a greater increase in the second
half of the orbit relative to the first half.

In addition, according to Eq. (37), the instantaneous
inclination angle of the perturbed orbit oscillates with a fre-
quency that is twice the frequency of the orbit cycle. During
each odd quarter cycle while the inclination angle is decreas-
ing, the nodal line is regressing at a rate related to the decrease
in the inclination angle. Then, during each even quarter
cycle while the inclination angle is increasing, the rate of re-
gression of the node, although monotonic, diminishes. This
physical picture is consistent with the solution in the lateral
displacement angle when transformed into nodal variations.
Thus, the motion behaves analogous to a gyroscopic preces-
sion.
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