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Perturbational Variations in a Ballistic Missile or
Satellite Orbit about an Oblate Earthﬂ‘ |

Tom T. Kumagar*

Hughes Aircraft Company, Fullerton, Calif.

This paper treats the problem of the oblateness effect on Earth satellites and ballistic
missiles in terms of the expected deviations in position prediction relative to an ideal Kep-
lerian orbit. The resulting closed form solutions in the variations in radius, in-plane angle,
and lateral displacement have the following significantfeatures: 1) easily instrumented in real-
time tracking and prediction systems; 2) no restrictions on eccentricity, including orbits
with escape velocities; and 3) offers a physical insight into the oblateness effect on freeflight
trajectories. In addition, the second-order solutions are applicable for all angles of incli-
nation with the possible exception of the region of critical inclination.

Nomenclature

V = oblate potential function

GM = gravitational product of Earth

Te = mean value of the equatorial radius of Earth

r = instantaneous geocentric radius of the satellite

@ = colatitude angle of the satellite measured from Earth’s
rotating axis

J = gecond harmonie oblateness coefficient

8r = variation in the satellite radius caused by oblateness

0 = orbital in-plane angle of the satellite measured relative
to the nodal line

B8 = nondimensional coefficient of angular momentum per-
turbation

13 = inclination angle of the orbital plane

€ = eccentricity of the orbit

l = a(l — ¢?), length of the semilatus rectum

[ = angle of perigee of the orbit relative to the nodal line

¥ = lateral deflection angle of the satellite relative to the
reference orbit plane

L = Lagrangian function

E = energy

Introduction

ECENTLY, a number of papers have been published in
the technical literature concerning the oblateness
effect on artificial Earth satellites. A partial list of the
available references is given in the bibliography.4579-13,1617
Baker and Makemson! and Sterne!® devote several chapters in
their respective books on the subject. . With the possible excep-
tion of a few, the general approach falls into one of two cate-
gories: 1) the application of the variation of parameters
technique on the classical orbital elements, or 2) the direct
integration of the equations of motion, either by numerical
integration or by transformation of the variables. The method
of the variation of the parameters applied to the oblate Earth
satellite problem yields results in terms of periodic and secular
variations of the orbital elements. These results are useful if
the primary interest in the oblate Earth satellite problem is
a critical examination of the time dependence on the orbital
elements. However, if the primary interest in the problem is to
determine the oblateness effect on the predicted positions of a
satellite or ballistic missile, the method of direct integration
is more useful. Many, such as Brouwer,? Garfinkel,® and
Vinti,’® have performed direct integration on the equations
of motion resulting in elliptic functions or elliptical integrals.
The analysis described in this paper also determines the
solutions by the method of direct integration. Its purpose,
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however, is to determine simple solutions directly in terms of
the satellite position and velocity parameters. These solu-
tions are obtained by integrating the transformed force equa-
tions in terms of the difference values in the radius vector,
in-plane angular displacement, and the crossrange displacement
of the perturbed satellite orbit relative to a Keplerian elliptical
orbit. The general solutions resulting from the analysis are
also applicable for eccentricities of 1 and larger. Also, the
solutions are understandable in terms of the geometry of the
orbit. As a result, the solutions yield a physical insight into
the oblateness effect on any orbiting satellite.

The equations of motion in terms of the difference values
are obtained by using the truncated potential function that
retains the second harmonic term in the latitude variation.
Then the perturbations on the radius vector and the angular
velocity are coupled together with the Lagrange equations
of motion into a simple second-order differential equation.
In addition, the application of the truncated potential func-
tion gives rise to a force normal to the orbit plane, provided
that the satellite is neither polar nor equatorial. For the
polar and equatorial orbits, the lateral displacement force
equation is zero using the truncated potential function

Vir, @) = —(@GM/r)[(r./r) + J@3/r)F — cos’)] (1)

Oblateness Correction in the Radius Vector and
the Angular Velocity
Since the Earth is flattened at the poles and bulges at the

Equator, a latitude variation in mass creates a noncentral
force field that can be represented by the potential function®?

Vire) = —(GM/r)l(re/r) — 3J(rd/r¥)Py(cosp) —

2H(rA/r)Ps(cosp) + 5K (rs/r)Pyleosp) + .. ] (2)
where

GM = gravitational product of Earth

r = distance to the center of Earth

Te = mean equatorial radius of Earth

@ = geocentric colatitude of the satellite position
Py(cosp) = 2 cos?p — %

Ps(cosp) = § cosPe — 3 cosp

Pyleosp) = +(35 coste — 30 cos?e + 3)

and J, H, and K are the coefficients of the second, third, and
fourth zonal harmonics.

The best present values of the geocentric constants based
upon satellite data are

6,378,145(1 = 11 X 107 m

1.996,501,5(1 £ 11 X 107%) X 10~2megm?/2/sec
(1623.41 + 4) X 10—

H = (6.04 = 0.73) X 106

K (6.37 £ 0.23) X 10—

]

T
(GM)12
J
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Since the uncertainty of the second zonal harmonic J is
of the order of the H and K coefficients, the uncertainties in
the results of the analysis using the truncated oblate potential
expressed by Eq. (1) would tend to mask out the effects
caused by oblateness using the H and K terms. Thus, the H
and K terms will be omitted in this analysis.

Additional Assumptions

The analysis is performed in a drag-free atmosphere where
Newtonian forces caused by the gravitational potential func-
tion, Eq. (1), are the only forces considered. Also, the gravi-
tational attractions of the sun, moon, and nearby planets are
ignored. Spitzer!4 has shown that the effect of the sun and
moon alter the radial distance of a 500-mile altitude satellite
approximately 1 and 2 ft, respectively, and alter the plane of
rotation 0.05 and 1 deg/yr. These effects are negligible and
are masked by the uncertainties in the geocentric oblate
constants. In addition, the analysis is performed in a geo-
centric inertial frame of reference of the Earth.

Analysis
Let
r Earth-centered radial distance of the satellite

([

r, = associated unperturbed Earth-centered distance of

the satellite which results from a pure inverse

square law foree field (Keplerian motion)

ér = r — ry, which is the perturbation in r, caused by
oblateness

6 = in-plane angle of the satellite relative to equatorial
crossing

B = nondimensional coefficient of perturbation

P = unperturbed angular momentum of the satelhbe asso-

ciated with the reference orbit

Then in terms of the “orbital plane’” the Lagrangian equa-
tions of motions are expressed as

F— 162 + (GM/r)[(r/r?) — 2J(r.3/r9)Ps(cosg)] = 0 (3)
C(d/dty(r¥6) = —ZJGM(r.2/r3)(d/d8)Ps(cose) “)

(The orbital plane is to be considered as the instantaneous
orhital plane that contains the satellite and its velocity vector
and is inclined at an instantaneous inclination angle ¢ relative
to the equatorial plane. The lateral displacement effect
caused by the Earth’s oblateness exerts a torque upon the
orbital plane causing a twisting motion of the instantaneous
orbital plane. Thus, although the satellite metion is not
planar, it can be treated as a planar orbit in which the orbit
plane rotates about the Earth’s axis.)

- Eq. (4) can be integrated immediately in terms of the angu-
lar momentum of the unperturbed orbit:

r = P(1 4+ B) (5)
where
. 2 t 1 sz(COSga)
PB = 3 JGM r2 o 73 —-“—-do (6)

Since this analysis is restricted to the order of the J har-
monic coefficient in the oblateness effect, Eq. (6) can be in-
tegrated directly by using the solution of the Keplerian orbit.

1 1+ ecos(d — )

ro a(l — €?) @
By transforming Eq. (6) from a time integration to a @ inte-
gration, Eq. (6) becomes

81 sz(COSgO)
db

Pg = P do (8)
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where
dr = d8/é
9)
= r2dd/P
The well-known relationship between ¢ and 6is
cosp = sint sind (10)

Upon substitution of Egs. (7) and (10) into Eq. (8), the solu-
tion for 8 can be found as

g = _2JGM1',2 sin? | sin%@ — ¢ cos cos®d ___l n
T TPl — L2 TR\ T3 T3

€ siny

S’;ﬂ +e an

where C is a constant of integration.

In the foregoing integration, the variations in sint, sinu, and

cosu were. neglected since the solution is only of the.order of
the J harmonic coefficient.
-»Now .reconsider Eq. (5). By considering the difference
values between the actual geocentric radius r of the satellite
and the associated unperturbed radius r, determined by the
Keplerian ellipse and also the corresponding difference values
in 6, the use of Eq. (5) results in

or = (r,/2)[8 — (86/6,)] - (12)
where
r =r, + or
o (13)
6 =6, + o6

The force equation of the difference values results from the
substitution of Eq. (13) into the force equation, Eq. (3), as

&F — 02%6r — 2r660 — 2(GM /r3)ér —
2JGM (r.2/r9)Py(cosg) = 0 (14)

In Eq. (14) and all succeeding equations involving the dif-
Terence values, the subscrlpt u indicating the unperturbed
values is dropped

Eq. (14) can be simplified by transforming the first term
into its equivalent 8 derivative. This results in

&F = 62(d20r/d9?) — 2(76/r)(ddr/d6) (15)

An expression for the second term in Eq. (15) can be found
by considering the total energy equation. Using the second-
order truncated potential function that results from Eq. (2),
the total energy can be given as

E = (#/2) + ("§/2) —
@M /r)[(r./r) — 3] (rd/r¥)Pa(cose)]  (16)
Upon substitution of Eq. (13) into Eq. (16),
SE = #6¢ + 12660 - r26r + (GM /r?)ér 4+
2JGM (r.2/r3)Py(cose) (17)

Eq. (17) represents the difference between the energy of the
satellite in an oblate Earth orbit and the corresponding energy
of the satellite in orbit about a spherical Earth.

Upon rearranging Eq. (17),
—#8(dér/d8) = 2660 + r62%r + (GM/r?)dr +
2JGM (r.2/r3) Pay(cosp) — 8E (18)

Then substituting Eqgs. (15) and (18) into Eq. (14), Eq. (14)
simplifies into

(d2or/d9%) + or = 3J(r2/D)Py(cosp) + 2(6E/PHrd (19)
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which becomes

(d*r/d0* 4 or = 3J(r,2/[)Py(cose) + 20E(3/P?%) X
[1 —3ecos(d — p) 4 6e2cos?(f — p) —...] (20)

‘where [1 4 ¢ cos(@ — u)] 2 has been expanded in series form
under the condition that the eccentricity is less than 1. This
condition can be removed for orbits with eccentricities in the
neighborhood of 1 and larger by choosing the reference orbit
such that 6F = 0. Eq. (20) has the solution

or = A sinf + B cosf — £J(r.2/l)(sin% sin26 —
2 sin? + 1) 4+ SE(3/P?)[2(1 — 4¢) —
3ef sin(f — p) — 4e2cos?(f — u) +...] (21)

where A and B are constants of integration which are of the
order of J. In the foregoing equations,

.l =PYGM (22)

which for elliptical orbits corresponds to the length of the
semilatus rectum.

A word of caution must be noted on the initial condition re-
strictions. Since 8 = 0 at time ¢ = 0, the initial conditions
on &r and 86 are related by the equation

257‘090 = ""7'0660 (23)

In addition, Eq. (17) relates 6F with the initial conditions on
dor, of, and 60 Thus, in general, either 8, or 86, and either
61' or 6E can be spe(nﬁed to describe the reference Keplerian
orbit from initial position and velocity data.

For most Earth satellite orbits where the eccentricity is
sufficiently small compared to 1, a consistent set of initial
conditions are

67’0 = 61"0 = 500 = {
(24)
S8E = 2JGM (r.2/ro*) P2(cosey)
This ideal set of initial conditions matches the Keplerian
reference orbit to the perturbed orbit at time £ = 0.
To determine the perturbation in the in-plane angle 6, the
solution for ér, Eq. (21), is substituted into Eq. (12), which
can be transformed into

dée/do = 3 — (28r/r) (25)
Upon integration, Eq. (25) has the solution

(2 8 g — 2 e —
06 = [J I <3 3 sin2 3 GSIHLCOS,U.>
2
46E}l—)2(1—462)—-%(Asinu—i—BcOS#)—l—C]ﬁ—l—
A 4 rr .
|:2 173 J B esmLsm#:l cosd +
[ Zl—l- leesin% cos;z.jlsin@{—

2
[l J I sin? 4+ — A l sinpg — %B% OOS[J,] sin26 +

2 2 .
[25E’ T § (2 sin? — I)J esin(@ — u) —
(4 cosy + B smp) £ sin% — 6 0F 1l32 e cos(@ — p) +
2 3
BE — €2 8in2(f — u) — — BE' 62(0 — weos2(8 — u) —

P2
45E — e2(€ — /u) 4+ D4 0(Je8) (26)
where A and B are the constants of integration associated

with 8r, C is the constant of integration associated with 3,
and D is a new constant of integration.
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Crossrange Oblateness Correction

From the physies of particles in a gravitational field, the
gravitational force per unit mass is the negative of the
potential gradient. Thus, since the chosen model for the
oblate potential function is a function of latitude as well as
the radius, the potential gradient has a component normal to
the geocentric orbit plane. The normal component of force
corresponding to the normal gradient gives rise to a lateral
displacement of the satellite relative to the reference orbit
plane. If the lateral displacement is attributed only to a
differential change in the inclination angle, the instantaneous
orbit plane eventually would become coplanar with the
equatorial reference plane. Ilowever, in addition to the
change in the inclination angle, the lateral displacement causes
an angular change in the line of nodal crossing. Thus, the
instantaneous orbit plane behaves analogous to a gyroscopic
precession in the variational behavior of the inclination angle
and the nodal line.

In addition to lateral potential gradient, the satellite ex-
periences a centrifugal force. With respect to the unper-
turbed orbit plane, the centrifugal forece has a -eomponent
along the normal to the reference orbit plane. This com-
ponent is of the order of the potential gradient in the cross-
range direction of the reference plane.

The equation of motion in the cross direction could be de-
termined from the foregoing discussion on physical behavior
of particles in an oblate gravitational field; however, it is
simpler to derive the equation of motion in the cross direction
from the application of the complete Lagrangian function L,

* which is

L = (7 + 126 cos®y + r%?) — V(r,p) (27)

where, in addition to r, 8, ¢, and V, which have been defined
previously, ¢ is the geocentric angle between the geocentric
radius vector of the satellite and the reference orbit plane,
measured in a plane perpendicular to the reference orbit
plane. From Eq. (27), the lateral equation of motion is

(d/db) [r2(dy/dt)] + 726? cosy siny = —(QQV/o¥) (28)

By restricting ¢ to small angles of the order of J and trans-
forming the time derivatives to 6 derivatives, Eq. (28) be-
comes

(d*y/d6?) + ¥ = —(1/r09)(dV/ay) (29)

The right side of Eq. (29) can be written in a more con-
venient form by the transformation

/oY = —(cost/sing)(d/0¢) (30)

where ¢ is measured positive in the direction of the positive
normal to the reference plane. The positive normal is defined
as

n=e Xeg
where e, and ep are unit vectors associated with the radius
vector and the local horizontal velocity of the satellite meas-
ured in the unperturbed orbit plane.

Using the truncated potential function and the relationship
cose = sine sinf, the J order approximation of Eq. (29) is

(d2y/de?) + ¢ = —J(r2/lr) sin2: sind (31)
where [ = a(1 — €?). Upon substituting

1 _1tecos®—w
ro l
Eq. (31) becomes
(d*/de?) + ¢ = —J(r.2/l%) sin2[sinfd +
$esin(20 — p) + fesinp] (32)
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Fig.1 Radial perturbation of a 100-mile altitude satellite
(. =35%¢e=0)

Eq. (32) has a general solution

¥ = oy sinf + as cosf + § J(r.2/1%) sin2:[0 cosf +
(¢/3) sin(20 — p) — esinu] (33)

Then the crossrange perturbation can be computed from Eq.
(83) as 6R, = ry.

Discussion of Results

The problem of the oblateness effects on ballistic missiles or
satellites has been analyzed from the viewpoint of differential
errors relative to an ideal Keplerian orbit. The results in this
form readily are applicable to real-time systems. For ex-
ample, when analyzing the downrange errors of a ballistic
missile, the oblateness variations can be considered as additive
errors in addition to the errors determined by variations in the
burnout parameters and errors caused by the drag effect.

§8 (miltiradians)

.
1) :;'{ ” 3% R
3
- plane argle

Fig. 2 In-plane angular perturbation of a 100-mile
altitude satellite ¢ = 35°, ¢ = 0)
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In addition, by the proper choice of the difference energy con-
stant and the initial conditions, the foregoing results can be
applied to orbits with escape velocities.

The solutions are accurate to the order of the J harmonie
coefficient and are not intended to determine the variations
in the “fine structure” perturbations in the H and K har-
monie coefficients. Also, the solutions are not applicable to
long-period variations without correction on the reference
orbit. Tor long-period variations without reference orbit
correction, the secular and Poisson variations in the foregoing
solutions eventually will exceed the basic assumption that the
variations are of the order of the J harmonic coefficient.
When the variations become larger than of J order, the dif-
ference equations used in the analysis require the addition of
the quadratic and higher order terms in the variations.

Effect of Perturbation of the Inclination Angle

With respect to the inclination, a criticism has been re-
ceived by the author of a possible error in logic in assuming

5

4

3k

W 24l 2inadians)

L N - . N N N N N
) r T 3 2
2

wn-plane a)’f 2

Fig.3 Lateral angular perturbation of a 100-mile altitude
satellite (¢ = 35°, ¢ = 0)

that the variations in the inclination angle do not affect the
integrations carried out in the analysis except to the order of
J2. This assumption has been used in the integration of Eqs.
(8, 20, 25, and 32).

To determine the order of magnitude of the variation in the
inclination angle ¢, consider the constancy of the Z component
of the perturbed angular momentum

720 cost = const (34)
or from Eq. (5)
P(1 + B) cost = const (35)
Differentiating Eq. (35) with respect to 0 results in
dde/d8 = ctnu(dB/d0) (36)

Upon differentiating Eq. (8) with respect to 8, treating ¢ as
a variable and substituting the result into Eq. (86) results in

doi/df = —1J(r2/lr) sin2¢ sin20 + 0(J2) 37)

Thus, the variations in the inclination angle ¢ are only of the
order of J, which justifies the original assumption that the
inclusion of the variational behavior of the inclination angle
gives rise to terms of the order of J2in the result.

Special Cases of Initial Conditions Chosen at
Equatorial Crossing

To discuss the general behavior of the closed form solu-
tions, it is of interest to consider the case where the reference
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Keplerian orbit is matched with the perturbed orbit in posi-
tion and velocity at the time of nodal crossing.
Then the solution in ér becomes

or = JI%(r.%/re®) [% cosl — £ +
ef sin(f — w) + esinp sinf] +
3 (r2/D[(1 — 2 sin®)(cos — 1) — sin% sin®d] (38)

From Eq. (38), ér has a maximum at # = = and odd multiples
of 7 for the orbits whose eccentricity is zero or for the orbits
where the angle of perigeeisw/2. For all other orbits with rela-
tively small eccentricity, the maximum occurs in the neighbor-
hood of § = (2n — 1)x, wheren = 1,2,3 .... Forthecasee
=0,

rmax = (—2 + 4 sin2)J (r.2/1) (39)

The interesting feature about Eq. (39) is that 6rm.= is non-
zero for the circular equatorial orbit. This is to be expected
since there is a radial perturbation in 7 for circular equatorial
orbits in accordance with Eq. (19) with ¢= 0.

Another interesting feature of Eq. (38) is that for orbits
whose eccentricity is nonzero there is a Poisson variational
term [f sin(6 — w)], which can be attributed to the precession
of the perihelion.

The variation in 8 also includes a Poisson term for orbits
with nonzero eccentricity. Other than the Poisson term, the
physical behavior of the secular and periodic variations in 6
can be examined by considering the simple case in which
e = 0 and for which the initial conditions are chosen at the
time of equatorial crossing. For this special case

80 = J(r/D[(2 — 3§ sin2)f + % sin% sin 20 +
2(% sin% — 1) sinf] (40)

The secular term added to the periodic terms gives rise to a
positive displacement in the angular motion of the perturbed
satellite relative to the motion of the satellite in the Keplerian
orbit. In addition, the secular term in Eq. (40) is the major
contributor to the precession of the perihelion for orbits with
nonzero eccentricity.

For the lateral perturbation, if the initial conditions are
chosen at the time of equatorial crossing with the perturbed
position and velocity matched with the Keplerian orbit, the
equation for the lateral perturbation becomes

¢ = 3J(r2/1?) sin2:[f cosb — (1 + %e cosu) sinf +
4esiny cosf + (¢/3) sin(20 — p) — e sinp] (41)

The most significant term in the lateral perturbation is the
Poisson term (0 cosf), which is the perturbation that gives
rise to the secular variation in the instantaneous nodal line.
To the J order of approximation, the lateral perturbation is
the largest contributor to the variation in the node and the
variation in the inclination angle. Since ¢ is measured
positive in the direction of the positive normal, the nodal
variation results in the regression of the node. The regression
of the node and the precession of the perihelion can be studied
from the results of this analysis by the use of vector analysis to
transform the variations in position into variations in the
node and the perihelion.

Figures 1-3 are plots of the variations given in Egs. (38, 40,
and 41), respectively, for the casee = 0.

To obtain a physical insight in the oblateness effect on
orbiting satellites, consider Eqs. (38, 40, and 41) and the
corresponding three figures simultaneously for thé special
case e = 0. Initially, let two particles coincide in position
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and velocity at the point of equatorial crossing moving in a
northerly direction at the inclination angle «. Let one of the
particles move in a Keplerian force field in a circular orbit.
Let the other particle move in the oblate force field. Then,
during the first half of the orbit, the particle in the oblate force
field decreases its geocentric radius and moves ahead of the
particle in the circular orbit. As the particle in the circular
orbit crosses the Equator moving south, the particle in the
oblate field has minimum radius. Then, during the next half
cycle, the radius of the particle in the oblate field increases
until at the end of this half cycle the radius matches the initial
radius. The angular displacement between the two particles
monotonically increases with a greater increase in the second
half of the orbit relative to the first half.

In addition, according to Eq. (37), the instantaneous
inclination angle of the perturbed orbit oscillates with a fre-
quency that is twice the frequency of the orbit cycle. During
each odd quarter cycle while the inclination angle is decreas-
ing, the nodal line is regressing at a rate related to the decrease
in the inclination angle. Then, during each even quarter
cycle while the inclination angle is increasing, the rate of re-
gression of the node, although monotonie, diminishes. This
physical picture is consistent with the solution in the lateral
displacement angle when transformed into nodal variations.
Thus, the motion behaves analogous to a gyroscopic preces-
sion.
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